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ABSTRACT

Consider a MIMO interference channel whereby each transmitter and receiver are equipped with multiple antennas.
The basic problem is to design optimal linear transceivers (or beamformers) that can maximize system throughput. The
recent work \cite {Jafarl} suggests that optimal beamformers should maximize the total degrees of freedom and achieve
interference alignment in high SNR. In this paper we first consider the interference alignment problem in spatial
domain and prove that the problem of maximizing the total degrees of freedom for a given MIMO interference channel
is NP-hard. Furthermore, we show that even checking the achievability of a given tuple of degrees of freedom for all
receivers is NP-hard when each receiver is equipped with at least three antennas. Interestingly, the same problem
becomes polynomial time solvable when each transmit/receive node is equipped with no more than two antennas.
Finally, we propose a distributed algorithm for transmit covariance matrix design, while assuming each receiver uses a
linear MMSE beamformer. The simulation results show that the proposed algorithm outperforms the existing
interference alignment algorithms in terms of system throughput.






Linear Transceiver Design for Interference
Alignment: Complexity and Computation

Meisam Razaviyayn, Maziar Sanjabi Boroujeni and Zhi-Quan Eelbow, IEEE

Abstract

Consider a MIMO interference channel whereby each transmitter and receiver are equipped with multiple antennas. The basic
problem is to design optimal linear transceivers (or beamformers) that can maximize system throughput. The recent work [1]
suggests that optimal beamformers should maximize the total degrees of freedom and achieve interference alignment in high SNR.
In this paper we first consider the interference alignment problem in spatial domain and prove that the problem of maximizing
the total degrees of freedom for a given MIMO interference channel is NP-hard. Furthermore, we show that even checking the
achievability of a given tuple of degrees of freedom for all receivers is NP-hard when each receiver is equipped with at least three
antennas. Interestingly, the same problem becomes polynomial time solvable when each transmit/receive node is equipped with
no more than two antennas. Finally, we propose a distributed algorithm for transmit covariance matrix design, while assuming
each receiver uses a linear MMSE beamformer. The simulation results show that the proposed algorithm outperforms the existing
interference alignment algorithms in terms of system throughput.

I. INTRODUCTION

Consider a multiuser communication system in which a number of users must share common resources such as frequency
time, or space. The mathematical model for this communication scenario is the well-kmtevfarence channel, which consists
of multiple transmitters simultaneously sending messages to their intended receivers while causing interference to each other.
Interference channel is a generic model for multiuser communication and can be used in many practical applications such as
Digital Subscriber Lines (DSL) [3], Cognitive Radio (CR) systems [4] and ad-hoc wireless networks [5], [6].

A central issue in the study of interference channel is how to mitigate multiuser interference. In practice, there are several
commonly used methods for dealing with interference. First, we can treat the interference as noise and just focus on extracting
the desired signals (see [15], [21]). This approach is widely used in practice because of its simplicity and ease of implementation,
but is known to be non-capacity achieving in general. An alternative technique is channel orthogonalization whereby transmitted
signals are chosen to be nonoverlapping either in time, frequency or space, leading to Time Division Multiple Access, Frequency
Division Multiple Access or Space Division Multiple Access respectively. While channel orthogonalization effectively eliminates
multiuser interference, it can lead to inefficient use of communication resources and is also generally non-capacity achieving.
Another interference management technique is to decode and remove interference. Specifically, when interference is strong
relative to desired signals, a user can decode the interference first, then subtract it from the received signal, and finally decode
its own message (see [8] and [11]). This method is less common in practice due to its complexity and security issues.

In a cellular system, multi-cell interference management is a major challenge. So far various base station cooperation
techniques have been proposed to mitigate inter-cell interferences, including multi-point coordinated transmission, or network
MIMO transmission [43—45]. Most of these techniques require each base station to have full/partial channel state information
(CSl) as well as the knowledge of actual independent data streams to all remote terminals. With the complete sharing of data
streams and CSI, the multi-cell scenario is effectively reduced to a single cell interference management problem with either
total [46] or per-group-of-antennas power constraints [47], [48]. While these techniques can offer significant improvement
on data throughput, they also have several drawbacks including stringent requirement on base station coordination, the large
demand on the communication bandwidth of backhaul links, and the heavy computational load associated with the increasing
number of cells [49], [50].

Theoretically, what is the optimal interference management strategy? The answer is related to the characterization of capacity
region of an interference channel, i.e., determining the set of rate tuples that can be achieved by the users simultaneously. Fol
the noiseless case, the capacity region and the optimal precoding strategy of the two user interference channel is discussed in [8
and [7]. In spite of intensive research on this subject over the past three decades ( [7] - [20]), the capacity region of interference
channels is still unknown for general case (even for small number of users). The lack of progress to characterize the capacity
region for a MIMO interference channel has motivated researchers to derive various approximations of the capacity region. For
example, the maximum total degrees of freedom (DoF) corresponds to the first order approximation of sum-rate capacity of an
interference channel at high SNR regime. Maximizing this approximation of sum-rate leads us to the interference alignment
method [1]. For frequency selective channels, interference alignment corresponds to correlated signalling across different
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frequeng tones. This linear transceiver scheme for interference alignment is a generalization of the standard OFDMA scheme
whereby each data stream is transmitted on a single subcarrier, which corresponds to using the standard unit bagis}vectors
(the i-th standard unit vector) for transmit beamforming. The linear transceiver structure for interference alignment is more
general since it does not require diagonal structure nor mutual orthogonality (two transmit covariance mYatkicase said

to be orthogonal ifTr(XY') = 0).

If we remove mutual orthogonality condition and impose only diagonal structure on transmit covariance matrices, then the
interference management problem is reduced to the dynamic spectrum management problem [40] where the goal is to find the
optimal power allocation (i.e., optimal diagonal transmit covariance matrices) which can maximize system throughput. This
problem has recently been a topic of intensive research in the signal processing and communications communities. For diagonal
matrix channel case (e.g. frequency selective scenario), the problem of maximizing sum-rate has been shown to be NP-hard
[40]. Several algorithms have been proposed which provide varied performance in different channel conditions. These include:
Iterative Waterfilling Algorithm IWFA [22], Successive Convex Approximation Low complExity (SCALE) algorithm [39],
Autonomous Spectrum Balancing (ASB) [29], Optimal Spectrum Balancing (OSB) [24]. Furthermore, different algorithms are
proposed for the case when the channel matrices are non-diagonal. Authors in [23], [25] proposed IWFA based algorithms for
power allocation. However, these selfish approaches work well only in low SNR cases or when the interference is low.

Compared to the networked MIMO approach, interference alignment requires less information exchange among transmitters,
and is therefore simpler to implement in practice. Recently two iterative algorithms have been proposed for interference
alignment [2], [41]. Both appear to work well in simulation of small systems (e.g., three users, each equipped with two
antennas}. These algorithms require system users to first specify the DoFs for all receivers and then attempt to achieve them
by iteratively aligning the interferences. However, these algorithms can not check if a given tuple of DoF is achievable, nor is
there any guarantee for reaching interference alignment even when the given tuple of DoF is achievable. Moreover, by focusing
only on high SNR regime and interference alignment, these algorithms do not attempt any power allocations across different
data streams. This can result in linear transceivers with suboptimal performance at low to intermediate SNRs.

In this paper, we consider the problem of maximizing the sum of DoFs and the problem of checking if a given set of
DoFs is achievable with linear transceivers. We study the complexity status of both of these problems over the spatial domain
and establish their NP-hardness. These results suggest that the two existing algorithms for interference alignment [2], [41]
cannot converge in general. We also propose a distributed algorithm to design linear transceivers for interference channels. Our
approach is based on using MMSE receivers while optimizing transmit covariance matrices for all transmitters. We maximize the
weighted sum of a utility of SINR’s for each data stream and use iterative convex optimization/relaxation to compute a (local)
optimal solution. The utility function iSINR/(1 + SINR) which converges td when SINR— oo, and is proportional
to SINR when the SINR value is small. In this way, maximizing the sum of utilities for all data streams corresponds to
maximizing the total DoF when the noise vanishes. Simulations show that our algorithm performs well in all SNR regions and
can deliver far superior sum-rate performance than the existing interference alignment algorithms of [2], [41]. Compared to
the networked MIMO approach which requires sharing of data streams, our linear transceiver design algorithm requires less
information exchange: at each iteration, only small covariance matrices are exchanged, the size of which are proportional to
the antenna numbers at each transmitter or receiver.

Il. SYSTEM MODEL

Consider akK-user MIMO interference channel witik transmitter - receiver pairs. Ldi;; be an N, x M; matrix
representing the channel gain from transmijtéo receiverk, wherel/; and N;, denote the number of antennas at transmitter
and receiverk, respectively. The received signal at receikes given by

K
Yi = Zijxj + ny,
j=1

wherex; is an M; x 1 random vector that represents the transmitted signal of userd n, ~ A(0,0°I) is a zero mean
additive white Gaussian noise.

For practical considerations, we focus on optitiraar transmit and receive strategies that can maximize system throughput.
In particular, suppose transmitteruses a beamforming matriX; to send the signal vectay;, to its intended receivek. At
the receiver side, receivér estimates the transmitted data vecigrby using a linear beamforming matrid,, i.e.,

A T
Xr = Vi si, sk = Ugyx,

where the data vectsy, € C%*! is normalized so thak[s;s?] = I, ands;, is the estimate o, atk-th receiverV, € CMr>dx
andU, € CN=*? are the beamforming matrices at the transmitter and the receiver okusespectively.

1Even though the two algorithms were motivated from different perspectives, they are in fact algorithmically identical.



It is known that the problem of designing optimal beamformers to maximize sum-rate of the system is NP-hard [40] even
in the single transmit/receive antenna case. Notice that recent works [1], [2] suggest that the optimal strategy should have
interference alignment structure in the high SNR regime. Therefore, we are led to find a linear transmission-reception strategy
that can maximize the total degrees of freedom. In the next section, we provide the complexity analysis of this problem.

IIl. NP-HARDNESS OFOPTIMAL INTERFERENCEALIGNMENT

In this section, we show that for a given channel, not only the problem of finding the maximum DoF is NP-hard, but also
the problem of checking the achievability of a given tuple of D@F, ..., dx ), is NP-hard when there are at least 3 antennas
at each node.

Notice that the interference alignment conditions in khth receiver are

U/H,;V; =0, Vj#k, 1)
rank (Ungk.Vk) = dk-. (2)

The first equation guarantees that all the interference is in the subspace orthogbhaluuoile the second one assures that
the signal subspacH, V. has dimensioni; and is linearly independent of the interference subspace.
In the sequel, we examine the solvability of above interference alignment problem (1) - (2) in two different cases.

Theorem 1 For a K user MIMO interference channel, maximizing the total DoF, namely,
K
max dp.
(U ViYL,
s.t. U/H,;V; =0, k=1,,K, j#k
rank (U Hp, Vi) =die,  k=1,.,K

is NP-hard. Moreover, if each node is equipped with at least 3 antennas, then the problem of checking the achievability of a
given tuple of DoF(dy,ds,...,dk), is also NP-hard.

Proof: The proof of the first part is based on a polynomial time reduction from the maximum independent set problem
which is known to be NP-complete. For a given arbitrary grépk (V, E), where|V| = K, consider aK user interference
channel that each receiver and transmitter has a single antenna. Moreover, the channel coefficients are given by:

o 1, if j=Fk or (k,j) € E,
*= o, otherwise

It can be checked that the receiver nodes can only achieve a DoF of either O or 1, and those receiver nodes achieving a DoF
of 1 form an independent set i¥. Thus, the problem of maximizing the total DoF for the above interference channel is
equivalent to the problem of finding the maximum independent set of vertices in the @raph
In order to prove the second part we use a polynomial reduction from the 3-colorability problem. The latter problem is to
determine whether the nodes of a graph can be assigned one of the three possible colors so that no two adjacent nodes ar
colored the same. The 3-colorability problem is known to be NP-Complete. There are two main steps in the construction. In the
first step, some dummy nodes are added to the channel in order to force a discrete structure such that each non-dummy nod
may only have one of the three possible cases. The second step is to define the direct channels in order to make a polynomia
reduction from the 3-colorability of an arbitrary graph to this problem.

For an arbitrary grapli with N nodes, we will construct a special MIMO interference channel for which the achievability
of one degree of freedom at each user is equivalent to the 3-colarability ¢ our construction, the MIMO interference
channel will have two types of userd/ main users, each equipped with 3 antennas at their transmitters and receivers and
11N dummy users which will be defined later. Hence the total number of usdsNs In the rest of the proof we suppose
that each user (either the dummy user or the main user) wants to send one data stream. In other words we want to check if
the tuple of all ones is achievable by the constructed interference channel or not.

We divide the dummy users into two groups. The number of dummy users in the first grapaisd the number of dummy
users in the second one93V. Each dummy user in the first group has 3 antennas at its receiver and transmitter, while each
dummy user in the second group has two antennas at its transmitter and receiver. Let us further arzNgeutineny users
in the first group intoN subsets each containing two users. We denote these subséisias 1,..., N, |4;| = 2. We also
denote the users in the sét asa; ; anda; 2, and associate them to thi¢h main user. For notational consistency, we denote
main useri asa; 0. We will also useq;  ; to denote thej-th transmit antenna of usef, ,,, wherel < i < N, k =0,1,2
andj = 1, 2,3. Similarly, we partition the set ddN dummy users in the second group imbsubsetsB;,i = 1, ..., N, each
containing exactly 9 dummy users denoted thy, with ¢ = 1,..,9. Each of thes& dummy users will have two receiving
antennas which we denote & ,,,, with m =1, 2.



Now for any fixed: and j, we consider any size-2 subset{af; 1. ; : k = 0,1,2}, e.9.,{ai0,,a:1,;}. For each fixed and
Jj, there are exactly 3 of these cardinality-2 subsets. Since there are 3 different chgicesedfave a total of 9 subsets of this
kind for any fixed:. Let us index these 9 subsets by/ = 1,..,9, and assign thé-th subset to usdr, , in B;. Now we define
the links in the channel for the users iy and B;. First, the channel matrices of all the direct links for any of the dummy
users ard (wherel is the identity matrix of the appropriate size). In addition, none of the dummy usé?¥s(h= 1,2, ..., N)
cause interference to the other users (which means that the channel gains between their transmit antennas and the other user
receive antennas are all zero). Now for the aforementighttdsubset which we denote &5 ¢ = {ai k,, j,, » @i ke, .je, }» WE
connecta; x, j,, and i ke, e, 1O b; ¢.1 and tob; ¢ 2, respectively. Here by connecting a transmit antenna to a receive antenna
we mean that the channel coefficient between these two antendadliss situation is shown in the figure 1 for the case
Si1 ={ai0.1,a:1,1}. Furthermore, we assume that dummy userg, k = 1,2 do not suffer from any interference.

1: Channels to the dummy receivéy,

Suppose that uset, ;, (k = 0,1, 2) uses the transmit beamforming vectoy j, 1, v; k2, vi x,3). Then the interference received
at the dummy receiver df; , will be:

Ibi,é = (Ui,kzl ey Sivkey s Viskey e, Si,k@) 3)

where s; i, is the signal user; ; intends to send. Notice that the signals which two different users want to transmit are
statistically independent. As a consequence, if we want to have interference alignment at the redejyesmthat this user

can send its own data stream, it is necessary and sufficient toave;, vix,, j, = 0. Hence, having the interference
alignment ath; , for all £ =1, ..,9 is equivalent to the fact that useds;, k = 0, 1,2 cannot send their messages through the
antennas with the same index, simultaneously. For examplg,if # 0 thenwv, ;1 andv; 2 ; have to be zero. On the other
hand, considering the fact that each user needs to send one data stream, it follows that none of &h¢,uBets0, 1,2, can

send their message on two of their antennas simultaneously, because otherwise if for exgngeleds its message on two
antennas, then it would result in insufficient spatial dimension for eitheror a; .

As an immediate consequence of these two facts we have just mentioned, we can conclude that the transmit beamforming
vector at each user; ,, k = 0,1,2, must be proportional to one of the vectdiso0,0]”, [0,1,0]7 or [0,0,1]T. This is true
specially for the main user. As we are not concerned about the constant factors, we have successfully imposed a discrete
structure on the problem solution so far. Notice that each dummyygenas a total of 2 dimensions in its receiver. Since
we have aligned the interference at each dummy tisgrthese users can communicate their data streams easily along the
remaining dimension left for them in their receivers and remove interference which lies in the other dimension. Moreover,
since in our construction the dummy usess., k£ = 1,2 do not experience any interference from other users and their direct
channel isl, so these users can easily achieve one degree of freedom. Thus, we only need to take care of the main users.

For each of theV main users, we must pick one of the three transmit beamforming vedtars]”, [0,1,0]% or [0,0, 1]
in order to achieve interference alignment at all the main receivers. We suppose all the direct channels for the mkiip,users,
arel. For the cross channels, we use the structure of gi@ph (V, E). For each edgéi,j) in G, we setH;; = H;; = I.
Otherwise we setl;; = H;; = 0 (zero matrix of appropriate size). Consequently, the main usensd j interfere with
each other if and only if they are connected to each other in géapte claim that achieving interference alignment in the
above MIMO interference channel is equivalent to 3-colorability of grapihis is because each user can choose 3 possible
beamforming vectors, each corresponding to a different color. If mainiuskeooses one of the three possible beamforming
vectors (or one of the three colors), then this beamforming vector cannot be chosen by any other main users adjacent to the
main useri in the graphG, otherwise the interference would appear in the desired signal space at the receiver of main user
i. This establishes the equivalence between the 3-colorability ahd the achievability of one degree of freedom for each
user in the constructed MIMO interference channel. Since 3-colorability problem is NP-hard, it follows that the problem of
checking the feasibility of interference alignment is also NP-hard. [ ]



Theoreml shows that the problem of checking the achievability of a given tuple of DoF is NP-hard if all users (or at
least a constant fraction of them) are equipped with at least three antennas. Our next result shows that when each user ic
equipped with no more than two antennas, the same problem can be solved in polynomial time. To this end, we need to define
some notations and make some observations. First of all, the interference alignment problem is equivalent to finding the signal
subspaces at the transmitters and the interference subspaces at the receivers such that the interference alignment conditions ¢
satisfied, i.e.,

dk = dim(Sk)
Hy, Sp L7y,
Hy;S; € I, Vji#k,

where S, and Z;, denote the signal subspace at the transmitend the interference subspace at recelverespectively.
The operatorL representghe linear independence of two subspaces. The first condition implies that the signal space has
dimensiond;, while the second condition says that the interference subspace and the received signal subspace must be linearly
independent. Finally, the third condition assures that the interference from other users lies in the interference subspace (which
is linearly independent of the signal subspace).

Notice that in the 2-antenna cased;f_ dr =1 andrank(Hy;) = 2, and the interference subspategis known, thenS;
can be uniquely determined I8 = H,_ Ik, for any j # k. Conversely, ifS; is known, we can uniquely find the mterference
subspace of uséy, i.e.,Z, = Hy;S;. Thus by starting from a node with a known subspace and traversing the interference links
with full rank channel matrices, we can uniquely determine the signal subspaces in the transmitter sides and the interference
subspaces at the receiver sides as long as they all have one DoF. Furthermore, if we find a loop of full rank interfering links,
the signal subspaces at these nodes must be the eigenvector of the composite channel matrix of the corresponding loop. T
make this point clear, consider a 4-user interference channel. If all interfering links are full rank, by starting from transmitter
1 and use the loop Tx: Rx2 — Tx3 — Rx4 — Tx1, we have the following relations

IQ = H2181, 83 = H2_31127 I4 = H43S37 81 = Hlez‘l'

Thus,S; must be the eigenvector of the loop channel md&[i}ng43H§31H21. Using this observation and the idea of traversing
the full rank interfering channel links, we can establish the polynomial solvability of the problem of checking the achievability
of a given tuple of DoF.

Theorem 2 For a K-user MIMO interference channel where each transmit/receive node is equipped with at most two antennas,
the problem of checking the achievability of a given tuple of DoF is polynomial time solvable.

Proof: By assigning zero channel weight if necessary, we can assume without loss of generality that all transmit-
ters/receivers are equipped with exactly two antennas,Mg.= N, =2, forall k = 1,2,--- , K. Furthermore, notice that if
a user has zero Dok{ = 0), then we can assign the zero beamforming vector to thls user and remove it (both its transmitter
and receiver) from the system. Thus, we can assumed;, < 2 for all £ = 1,2,--- | K. We further assume that all the
direct channel matriceBl .,k = 1,2, ..., K, are nonzero. Now the problem is to determine whether the given tuple of DoF
(d1,da, -+ ,dk) is achievable or not. To this end, we need to define two bipartite graphs over the nodes of the interference
channel (one side of the graph consists of transmit nodes and the other consists of the receive nodes). In particular, we construc
a bipartite graphG by connecting the transmit node of useto the receive node of usgrif and only if the channel between
them is nonzero, i.eH,; # 0. Furthermore, we construct a bipartite subgraph= (V’, E’) of G by considering only the
full rank links of G, i.e., connecting transmit nodeto the receive nodg # ¢ if and only if rank(H;;) = 2. Notice that the
link between transmit nodeand receive node is not included inG’ even if rank(H;;) = 2.

In what follows, we first consider a simple case which gives us the idea of how a loop of rank 2 interfering channels forces
a discrete structure on the choice of signaling subspaces at the transmitters. Then, using this idea, we provide the proof for
the general case.

Consider a connected componefit of G where all the interfering links are full rank and connected, i.e., the induced
subgraph ofH over G’ is connected and contains all the interfering linksfdf We first argue tha#{ can not contain the
receive node of any usérwith d, = 2. Suppose the contrary. Then the direct channel mdkfiy,, must be full rank. [IfH;
is rank deficient, then the received signal subspace at receib@s dimension at most 1, which would make it impossible
to achieved;, = 2.] We further claim thatd cannot contain any other nodes. Since the direct link between the transmit and
receive nodes of usdris not contained ir, it follows that the receive node of uskmust be connected to another transmit
nodea in H. Let this nodea be associated with a us¢r(j # k). Notice that usey achieves a DoF at least 1 (since all zero
DoF users have been removed fram). By definition, nodeas must be connected to the receive node of useia a full rank
cross talk channel matrik;. Thus, user will cause a nonzero interference subspace to kseontradictingd;, = 2. Since



all users with DoF =0 has been removed from gréghwe must havel, = 1 for all receive nodes irf{. For the other case
where nodes is a receive node of user, thena is linked to the transmit node of usérvia a full rank channel matrix. In
this case, usek will cause a 2-dimensional interference subspace to jiseraking it impossible to have; > 1.

We now assume that all receive hodeddrhave one DoF. We can start from an arbitrary initial nodéZodnd use Breadth
First Search (BFS) to find a spanning tree. Since each user has one DoF, the signal and interference spaces of all receive node
in H are uniquely determined by the signal (or interference) space of the initial node. Since the initial node is arbitrary, this
shows that the signal/interference spaces for all noded iare linearly related to each other (via some constant composite
channel matrices, see the discussion before Theorem 2). Fixing any one uniquely determines the rest. For the remaining edge:
(or links) not in the spanning tree, they each create a unique loop in the tree. We can compute the composite channel matrices
for these loops (see the discussion before Theorem 2). Notice that each loop matrix<{8bas either one, two or infinitely
many eigenvectors (when the composite channel matrix is a constant multiple of identity matrix). Suppose a loop matrix
(starting from a given transmit node, sayin the loop) has one or two unique eigenvectors, then the signal space ob node
must be generated by one of these eigenvectors. In fact, since the beamforming vectors of fibdes iimearly related, each
loop in H places a restriction on the choice of beamforming vector of rhiodéaus, for any fixed transmit nodein H, there
are multiple restriction sets, each corresponding to a loof ioaused by adding an edge to the minimum spanning tree and
each containing one/two one-dimensional subspaces from whicht'®diginal space can be chosen. The receive nodés in
can achieve interference alignment if and only if these restricted sets of one-dimensional signal subspaceshfshareda
common one-dimensional subspace. Moreover, to ensure each Useschieves one DoF, we need to additionally make sure
that the resulting interference subspaces at all receive nodHsare linearly independent from the corresponding respective
signal subspaces. Since the total number of restriction sets is at most linear in the number of déigesdieach restriction
set contains at most two one-dimensional subspaces, checking if these restrictions have any common one-dimensional subspac
can be carried out i (K ?) time. Moreover, for each common one-dimensional subspace, checking if the linear independence
between the resulting signal subspace and interference subspace (already aligned) at each receive node can also be perform
in time that is linear in the number of nodes #h, or in O(K) time.

Now we are ready to look into the general case in which the rank 1 links are considered as well as the full rank links.
Since there is no interfering links between different connected componeiits wé can assign the signal subspace for each
connected component separately. Notice that the number of connected compor@nssadfmosti’, we only need to assign
transmit subspaces for every connected component of G in polynomial time.

Let H be a connected component@f Let H' C G’ be a subgraph off which contains only links with full rank channel
matrices. H’ can be broken into various connected component&;ofBy the argument above for such components, the
signal/interference spaces for the nodes in these connected components (consisting of at least two nodes) can be assigned |
one of the two ways:

(B1) The connected component contains a cycle with a channel matrix that is not equal to a constant multiple of the identity
matrix. In the case, the beamforming vectors of all nodes can be determined from the eigenvector(s) of a certain loop
channel matrix. In this case, there are at most two possible choices of signal/interference space for each node.

(B2) The connected component has no loops (i.e., forms a tree) or if every loop has a composite channel matrix that is a
constant multiple of the identity matrix. In this case, the signal/interference spaces of all nodes are linearly related to one
another. The signal/interference space of one node can be fixed at an arbitrary one-dimensional subspace. Once this is
fixed, the signall/interference spaces of other nodes can be derived uniquely.

Consider a rank-1 interfering link idl with channel matrixH,; (i # j). If user j transmits in the null ofH;;, then
the signalling subspace of usgris known, i.e.,S; = Null(H,;). Otherwise, the interference subspace at userknown,

i.e., Z; = RangéH,;). This is because, > 1, so we havedimZ, < 1. This plus the fact thaRang¢H,;) C Z; implies

7, = Rangé¢H,;). Therefore, we can assign a Boolean variableto each rank-1 channdl;;, with “z;; = 1” representing

S; = Null(H;;) and “z;; = 0” signifying Z; = Range(H,). In this way, we associate a Boolean variable for each rank-1

crosstalk channel matrik;; in H.

Next we represent the interference alignment condition at each receive ndélaising the Boolean variable:;; } (plus
some auxiliary Boolean variabldgy;, z;;, z; } defined below). Suppose usés receive node is inH. We consider the cases
d; = 2 andd; = 1 separately.

Cased; = 2: In this caseZ; = 0, so we must have;; = 1. We rewrite this condition in the form of two 2-SAT clauses

45 V Yi, Tij V i, for all j 7é 1 andrank(Hij) =1, (4)

wherey; is an auxiliary Boolean variable. In this case, the satisfaction of (4) and the condition that the receive node of user
1 is not connected to other users’ transmit nodes via rank-2 links is equivalent to achieving one DoF for user

Cased; = 1 andrank(H;;) = 1: In this case, then the received signal subspad4;js; = RangéH,;) anddimZ; = 1, so
that all the interference at the receive node of usaust be aligned in an one-dimensional subspace that is linearly independent
of Range(H;;). We need to further consider several subcases, depending on if the receive node:d$ usemected to other



transmitnodes via rank-1 or rank-2 links. In particular, if the transmit nodes of ysarsd & are connected to receive notle
via rank-1 links, then the interference alignment condition requires the satisfaction of the following 2-SAT clauses

x;j V xg, forall j # k # ¢ such thatrank(H;;) = rank(H,;;) = 1 andRangé¢H,;) # Rangé€H,;), )
Tij V Zijy Tij \Y El-j, for all J # 7 such that‘fank(Hij) =1and RangQHZ—j) = RangQHii),

where z;; is a dummy Boolean variable, and the last condition corresponds to the linear independence requirement of the
signal/interference subspaces. Moreover, if there is a rank-2 link connecting the receive nodeiofouer transmit node

of user?, ¢ # 1, i.e., Hy is full rank, then the receive node of useis in H'. Consequently, the transmit strategy of user

¢ has only two possibilities B1 and B2 as outlined above. For the Case B1 where the transmit node/ofarsgick one

of the two possible beamforming vector$, v;, we define a Boolean variable with “z, = 0” representingv) is chosen,

while “z, = 1” signifying v} is chosen. Now the interference alignment for usezquires the satisfaction of following 2-SAT

clauses
ze Vx5, forall j # ¢+ i such thatank(H;;) = 1, rank(H;,) = 2 and H;,v) ¢ RangéH,;),

zZe Vx5, forall j # ¢ +# i such thatank(H;;) = 1, rank(H;,) = 2 andH;,v; ¢ RangéH,;). (6)

If in Case B1 the transmit node of usémust pick a unique vector?, then we must have, = 0 andz;; = 1 if vag ¢
Rangé¢H,;), andz, = 0 if Hi,gvg € Range(H;). The latter conditions are equivalent to the satisfaction of the following 2-SAT
clauses:
Ze NV xij, Zg NV Tij, 2oV Xy, for all j # l 75 i S.t. rank(Hij) =1, rank(HM) =2 and HMV%) ¢ RangeéHl-j), (7)
zZe V Tij, Ze V Lfij7 for all J 75 l 75 1 S.t. rank(Hij) =1, rank(HM) =2 and HZ[VQ S Rang&éH”)

To ensure linear independence of the signal and interference subspaces forwsenust make sure the satisfaction of the
following 2-SAT clauses

ZeVyi, ZeV iy, forall £+ s.trank(H;) = 2 andH,,v; € Rang¢H;;), ®)
2oV yi, 2oV Yi, forall £+ st rank(H;) =2 andH,;v) € RangéH,;),

wherey; is a dummy Boolean variable. Now we consider Case B2. Suppose the receive node ofiesén a connected
componentd” of H'. Then, for each pair of receive node of useend/ in H” (i # £), there exists a (efficiently computable)
nonsingular matrixG;, such that

T, = Giy.

To ensure this condition, the following 2-SAT clauses must be satisfied for all transmit peaes: in H”:
xi; V xe, forall j#i, k# ¢ s.trank(Hy) = rank(H;;) = 1, andG,cRangéH,;) # RangéH,;). 9)

Furthermore, to make sure that the signal and interference subspaces are linearly independent at the receive nagde of user
we must have for all transmit nodein H” that the following 2-SAT clauses are satisfied

Tij V Zij, Tij V Zij, for all J 75 7 S.t. RangéHij) = Range(Hi). (10)

Finally, we notice that the Boolean variablgs, z;¢} all represent the signaling strategies of uséie must ensure that these
signaling strategies are compatible. In other words, we can not simultaneously haw bothull(H,,) andS, = Null(H;,)
(j # i), unless of course the two null spaces are equal. This implies that we should have

iV Ty, forall i # j # ¢ strank(Fy) = rank(H;e) = 1, Null(EL;,) # Null(FL;,). 1)

Moreover, if the transmit node of uséris also in H” and its transmit beamforming vector must be chosen from the set
{v9,v}} (Case B1). Then, by a similar argument, we must also ensure the following compatibility conditions:

Tie V zp, forall i %] 7& { s.t. rank(Hig) =1, I‘ank(ng) =2, Vg g NU”(HM),
TV Z, foralli# j+#¢s.trank(Hy) = 1, rank(Hje) = 2, v; & Null(H;,).

In case of B2 (i.e.H" is a tree or all loop matrices are constant multiples of identity matrix), then the transmit subspace of
user/ (which lies in H”) can be chosen continuously (rather than from a discreté\etv; }). In this case, the compatibility
condition (11) is sufficient; there is no additional compatibility condition needed.
Cased; = 1 andrank(H;;) = 2: In this case, if the transmit node of users connected to a receive node of ugevia
a rank-1 link, thenz;; = 1 signifies the use of transmit beamforming subspac&afi(H,,) for users; else if transmitter
is in H” so that its transmit beamforming direction must be chosen pnv!, corresponding ta; = 0 and 1 respectively
(Case B1). [Case B2 corresponds to the continuous selection of beamforming vector farnes@SAT clause is needed in
that case.] In the first case, the signal subspace at receive node af sesmesH,;; Null(H ;), while in the second case,

12)



the signal subspace iH;;v?, or H;;vi. We must make sure the signal subspace is linearly independent from the interference
subspace of user This implies that the following 2-SAT clauses must be satisfied:

Zj; Vi, foralli# j#{s.trank(H;) =rank(H;;) = 1, Range(H,;) = H;;Null(H;;),

wi V2, foralli#jstrank(Hy)=1,4i€ H”, H;v? € RangéH;,), (13)
ziV z, foralli#j+#/¢strank(Hy)=1,i€ H”, H;v; € RangéH,,).
It can be checked that the DoF tuglé,, ds, . ..,dk) is achievable if and only if conditions (4)-(13) are satisfied for some

binary realizations of Boolean variablés;;, y;, z;, z; }. Moreover, the number of such 2-SAT clauses is polynomiakin
(in fact O(K*)). Hence, we have transformed the DoF feasibility problem in polynomial time to an instance of 2-satisfiability
problem. The latter problem is known to be solvable in polynomial time. ]

IV. STRATEGIES FORLINEAR TRANSCEIVERDESIGN

In this section, we propose linear transceiver design algorithms for interference channels. Using linear transceivers introduced
in Section 11, the estimated data stream at recelvés given by

K
ék = Ug Z ijVij + U;‘gnk
j=1
and the SINR value for the-th data stream of usér, 7{, is given by
ug " Hy v 2
T .
ol + 32 g 105 Hi vy |2

whereu] andv} denote the;-th column of U;, and V, respectively. Using a linear MMSE receivef, we have

V=

= VZ,TH{k(UQI + Z ijv;V;Tng)*lHkka.
() #(k,q)
One possible choice of the utility function for tleth user could be the sum of the SINR values of its data streams, i.e.,

&=
q

= szTH;‘gk(U2I + Z ijvgv;-TH;‘gj)*lHkaZ.
q () #(k,q)

However, maximizing$; does not lead to the maximization of the total DoF in high SNR. Therefore, we need to introduce

another utility function in order to capture more DoF for each user. First, we define= ﬁ asthe utility function of the

g-th data stream of user and then, we consider;, = >_ U(v{) as the utility function of usek. Thus, at high SNRI{x

equals the DoF at receivér, while at low SNR,;, equals the sum SINR. Using the rank one update of the matrix inverse

term in SINR value, we can rewritd, as

U, = Z VZTH&(UQI + Z Hk.jv;ngng)*lHkk.VZ.
q (j)T)
The proposed utility function preserves fairness among different data streams éf aisgralso closely approximates the sum
DoF at high SNR.

Directly optimizing linear transceivef®’s and V's requires specification of DoR$, in advance, since the dimension of
U, and V; depends onl,. To avoid this explicit dependence aip, we consider optimizing the transmit covariance matrix
instead of linear transceivels; and V. In particular, we write the utility function of usér as

k
U = Tr |HuQuHE (0°T+ > Hy QHJ,) ™! (14)
=1
whereQ, = 3_, vi(vi)T is the transmit covariance matrix of ttheth user. However, this utility function still does not related
to the sum-rate directly. In the sequel, we propose a weighting approach to relate the utility function in (14) to the rate of
userk.
Consider the well-known weighted sum-rate maximization problem

K
max o Ry (15)
{Qk}i‘(zl kzzl

s.t. Tr(Qg) < pg, Qr =0



where R;, £ logdet (I +Hx QcHT, (021 + Dok erQgH{z)_1> is the achievable rate of usérand the coefficienty
denotes usek’s weight. Using linear algebra to simplify the objective function, the above problem can be reformulated as the
following equivalent optimization problem:

K K -1
min > oy logdet | I—HyQuHY, 0?T+ > HyQHY, (16)
Qo 3 =1

s.t. Tr(Qk) S Pk, Qk = 07

where the term inside the determinant is linearly related to the utility function in (14). Similar to [51], we reformulate the
problem (16) by further introducing new optimization variabMg, € RM*M L = 1.2 ... K, to obtain the following
equivalent optimization problem

K K

min Z a Tr(Wigr(Q)) — Z ay log det Wy, a7
{kawk}§:1 k=1 k=1

sit. Tr(Qx) < p Qr = 0,
WhereQ = (Qla Q?a ERE) QK) and

K

96(Q) 2 T — HuQuH (0’ T+ > Hy QHJ,) ™
=1

The optimization problem (17) is convex W }# . By checking the first order optimality condition, the optimai;, is
given by
WP =1+ HeQuHL, (0°T+ Y HyQHE) ™, VE=12,... K. (18)
04k
By plugging back the optimaW,‘:pt in (17), we immediately see the equivalence of (17) and (16). Furthermore, in order to

have a distributed approach, we let users update their transmit covariance matrix independently. Therefore { N6 fied ,
userk can solve the following optimization problem to update its transmit covariance matrix:

max agIr
Qk

K
WiH, QuH (07T + ) HkéQZHkT-z)ll
=1

K
+) aTr leHijjHJTj(a—QH ZngQgH;Q)”] (19)
j#k 1=1

s.t. Tl”(Qk) < pk Qr = 0.

Unfortunately, this objective function is not convex. In order to make the problem convex, we keep the first term in the objective
function (which is a concave function @) and use the local linear approximation of the second term, i.e.,

> a; Tr [W;H,;QHT (Cjr + HyQuHJ,) ']
£k
~ Zaij {W]HJJQ]H;T] |:(Cjk +ijQkHka)71
i#k
—(Cjr + H;, QpHJ, ) " H;, QuHJ, (Cyi + Hyp Qe H, )~
+ (Cj + HjuQuHJ,) "' H,;, QuHT, (Cj + ijQkHka)_l} }

whereQ;, is the local value of transmit covariance matrix at the previous iterationGands the received signal covariance
matrix at receiver; excluding thek-th user’s signal, i.e.,

Cjr 0’1+ ) H;QH], (20)
£k
By substituting the above approximation in (19) and simplifying the resulting optimization problem, we get

K
max apTr W H QuHY, (0T + Y HyQHY,) ™!
k

=1
s.t. TT(Q]C) < pk Qr =0

—Tr [Bka] (21)
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whereBy £ 3", H}, (Cjx +H;xQrHJ,) ™' oW, H,;;Q; HY; (Cjx+H;x Q,HJ, ) ~'H;i. The objective function in (21) considers
the effect of transmit covariance matrix of ugeon not only its own rate, but also those of others in the interference channel.
Similar balanced approaches have been considered in related works, see [42], [52-54]. By further simplification of the objective
function and using the Schur complement, the problem can be formulated as the following Semi-definite Programming (SDP)
form:

min  a;Tr[Y] + Tr [Br Q] (22)

Qr,Y

st Tr(Qr) <pr, Qk=0,

Cir + Hie QeHY, (Wi Chy)'/?
(Wk Ckk)l/z Y ~

Note that the matriceV, and C,; are updated by (18) and (20) respectively. TA¥5,C,, is Hermitian positive semi-
definite. Hence, for fixed matrice§W, }X_,, userk can update its transmit covariance mat@y, by solving the above SDP
problem.

1. initialize with Q = ]{’—ﬁl andW, =1,forall k=1,2,--- | K
2. repeat

3 for k=1,2,--- K do

4. updateW, according to (18)

5 updateQy by solving (22)

6 updateW, according to (18)

7. until corvergence, of|Q — Q|| < e

2: An iterative SDP approximation algorithm for sum-rate maximization

Note that the second term in (19) is a convex functionpf. Therefore, the local linear approximation is a lower bound
which is tight at the current poin®Q. Hence, by solving (22), we minimize a concave lower bound of the original utility
function (19). Since the previous iteraf®, is feasible for (19), it follows that the system utility function (i.e., the objective
function of (19)) is non-decreasing. Furthermore, (19) is bounded from above and this implies the sequence of objective function
values generated by the proposed algorithm converges. The following theorem further establishes the iterate convergence to
stationary point for the proposed algorithm. In order to prove that each limit point of this algorithm is a stationary point of
the original problem we need the following lemma.

Lemma 1 If the direct channel matrices are full-rank and tall, the function:

K
For-1(Qr) £ o Tr | W Hg QuHY (0T + Y HiQHY) ™ | — Tr [BrQy (23)
=1
is strictly concave with respect to symmetric positive semidefinite m@grixMoreover, the objective function ¢l.7) is also
strictly convex with respect t8Vy.

Proof: See Appendix, Section VI. [ ]

Theorem 3 Assuming that the direct channel matricdd;, are full rank and tall, then every limit point of the proposed
algorithm is a stationary point o{15).

Proof: According to Lemma 2 (see Appendix, section VI), every stationary point of (17) is also a stationary point of
(15). Therefore, we only need to prove that every limit point of the proposed algorithm is a stationary point of (17). To this
end, let us define the auxiliary variab®’ = {X:}2X , whereX}, | £ Qi is the updated transmit covariance matrix of
userk ati-th iteration andX?, = Wi is the updated weight matrix of usérat i-th iteration. In particular, we defin@: to
be the solution of the following problem

, o _ o ) e .
X1 = Qj £ Argmax Foro1(Qu; X4, X5, XE, o, X0 X X
k

st Tr(Qk) < pr, Qr =0
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where for 1 (Qp; X4, X5, ..., X, o, Xo b X1 X5 ) is the objective function of (21) which is the local concave
lower bound approximation of the objective function in (17) as discussed in section IV. Similarly, we H&fine W to
be the updated weight matrix of uskrat iteration, i.e.,

. _— o ) - - -
XL, = Wi, :Argr{}&){ f(Wk;Xll,Xé,...,Xékfl,ng_i_pXZ% oo Xog)

where f(+; -) is the objective function in (17).

Let X’ £ (X4, X3, ..., X5,) be the tuple of transmit covariance-weight matrices Xricbe a limit point of the sequence
{X"}%2,. Therefore, there exists a subsequence of ind{éess, ..., %;, ...} such that
lim X% = X*
j—oo

First, we will prove thatlim X’f“ — le' = 0 by using contradiction. Suppose the contrary. Hence, by further restricting to
J—00
a subsequence if necessary, we have
J3y* > 0 such thaty > ~*  Vj,
1

;- i1 i oo XX . . .
where~is = | X%+ — XY ||. LetSY £ S Since||SY || = 1, according to Bolzano-Weierstrass theorem, there exists

J

a subset of indices, denoted By and a unit length matri$; such that

. i
lim Sy =8S;].
ij€l, j—oo

Obviously,0 < ey* < ~% for everye, 0 < ¢ < 1. Moreover, since the feasible set is convééé," + GV*S? belongs to the
feasible set. Therefore, according to the definitiori?(:’éiﬁrl and using the concavity of;, we have

AXPTLX0) > (XY + ey*SY;XY) > fi (XY XY). (24)

On the other hand, the value of the objective function in (17) is always increasing and bounded from above. Moreover, the
feasible set is closed and theref&e is in the feasible set. Hence, the value of objective function converg¢sXo), i.e.,

lim f1(XY;XY) = lim fi(Xy "5 XY) = f(X7).
j—oo j—oo
Therefore, lettingj — oo with i; € I in (24) yields
fi(XT +ey*ST; X*) = f(X*), Veel0,1],

which contradicts the strict concavity ¢f(-) (c.f. Lemma 1). Therefore]im X?“ — Xi’ = 0, or equivalently, we have
Jj—oo

lim X7 = lim XY = X1 (25)

j—o0 j—o0

On the other handXZf+1 is the local maximum off, (-, X% ). Hence,
T [V, Fi (X775 X0) (X0 - X)) <0,
for any feasible poiniX;. Letting j — oo and using (25) yield
Tr [V, fu(X35 X (X0 = X)) <0,
Since f(-) and f; (-, X*) have the same gradient with respect¥¢ at pointX*, it follows that
Tr [V, /(X (X1 - X)| < 0.
Repeating the same argument for lalk= 1,2, ..., 2K, we get
Tr {vxkf(x*)T(Xk - XZ)} <0, Vk=1,2,...2K.

By summing up all the equations for dlls we get,

Tr [V f(X) (X = X*)| <0

which implies the stationarity oK*. -
A couple of remarks are in order. First, in the proof of Theorem 3 we have only used the strict concavity of fyfiigtion
Consequently, the proof works for other objective functions that have the same property and using similar methods, e.g. [42].
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Secondafter solving (22) to get the solutio®;, we can update the transmit covariance matrix by using relaxation parameter
0<a<l,ie,Qr— aQi + (1 —a)Qs. It can be shown that the convergence result of Theorem 3 holds even by using a
fixed relaxation parameter.

An alternative to solving (22) at each iteration is to update the transmit covariance matrix in a totally unselfish manner, i.e.,
solving the following problem

min Tr [BrQg]
Qk

st. Tr(Qr) =pr, Q= 0. (26)

The above problem has a closed form solut@p = p.qq”, whereq is the eigen vector aB,, corresponding to its minimum
eigen value. This unselfish approach requires all the users to exhaust all their transmit power, potentially causing unnecessary
interference. Furthermore, it results in one DoF for each user be€Quse always rank one. In cases that the all one DoF
vector is not appropriate either because it is not achievable or because it is too conservative, the above unselfish strategy cannc
lead to the maximization of sum DoFs.

In general, if we know the DoF of each user a-priori and allocate equal power across the data streams, we can update the
transmit beamformer of usér by solving the following optimization problem:

. T
Igl:l Tr [Vk, Bka] 27)
st. VIv,=LE 1
dy,

This approach lets each transmitter use maximum power and pick a transmit covariance Vhasix as to minimize the
total interference to other users. It has a closed form solMigrwhose columns are proportional to the eigenvectorB pf
corresponding to itgl, smallest eigen values, scaled appropriately to satisfy the power budget constraint.

1. initialize with Vi, =0 andW;, =1, forall k =1,2,--- | K
2. repeat

3 for k=1,2,--- ,K do

4. updateV;, by solving (27)

5 updateW,, according to (18)

6. until corvergence

3: The unselfish algorithm for sum DoF maximization

V. SIMULATION RESULTS

In this section, we present some numerical results comparing the Decentralized Interference Alignment (DIA) method [2]
with our proposed methods. All numerical results are averaged over 20 channel realizations. In each channel realization, the
path loss of the channel coefficients are generated by a relay-backhaul model provided by Huawei Technologies. We consider
19-hexagonal wrap-around cell layout. We randomly chaisbase stations, each serving a random relay in its own cell at
each time slot. Each base station serves different relays in its own cell orthogonally. Therefore, at each time slot, the base
station-relays form an interference channel. The relays have fixed locations so the the system has enough time to learn the
channels. The MIMO channel coefficients are modeled by the standard single tap Rayleigh fading model. We consider linear
MMSE receivers and equal power budget for all users and for all methods. To implement DIA, we need to predetermine DoF
for all users. In all simulations DoFs are set to be equal for all users.

In the first numerical experiment, we consid€r= 10 base station-relay pairs, each equipped with= 2 antennas. The
predetermined degrees of freedom used in DIA methoddare dy = ... = dx = d = 1. Figure 4 represents the sum-rate
comparison between the proposed methods and DIA. As Figure 4 shows, the proposed method yields substantially higher
sum-rates in this case. In fact, the sum-rate achieved by the DIA method does not grow linearly with SNR, indicating that
interference alignment has not been achieved.

It is known that the DIA method works well for thE = 3 case where interference alignment is possible [2]. We consider
the case of{ = 3 transceiver pairs each equipped with = 3 antennas and one DoF is considered for each transmitter. As can
be seen in Fig. 5, the selfish and the SDP approach works well in low SNR, but is outperformed by the DIA approach in high
SNR region where the interference alignment effect begins to kick in. Interestingly, our Unselfish approach for interference
alignment outperforms the DIA algorithm in the entire practical SNR range. Although the DIA method and the Unselfish
approach both achieve a sum-rate that increases linearly with SNR, the Unselfish approach has a better offset compared to the
DIA method.
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VI. APPENDIX: PROOF OFLEMMAS 1 AND 2
Lemma 1 If the direct channel matrices are full-rank and tall, the function:

K

for—1(Qr) & i, Tr | W Hp QuHE, (0%T + Z H,,QMH},) ™| — Tr[BrQx] (28)
=1

is strictly concave with respect to symmetric positive semidefinite m@trixMoreover, the objective function ¢l.7) is also
strictly convex with respect t8Vy.

Proof: Using the notations we have defined so f&,_1(Qx) is given by

For-1(Qx) = ag, [Tr (Wi Cri(Crr + Hee QeHEL) 1) — Tr(BrQu)] -

The second term iIka_l(Qk.) is linear in Q; and does not change the strict concavity of the function. Hence, it suffices to
show the strict concavity 6fr (W, Cri(Cri, + HiQrHYT,)1). To do so, it is enough to prove that the function is strictly
concave in any feasible direction. We drop the indefor notational simplicity. Let us consider a feasible direction denoted
by a symmetric matriXD + 0 of appropriate size and a scalai- 0. We further define the notatioD’ = HDH? and the
function

hy(t) = Te(WC(C + X + D))
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whereX = HQHZ” andC + X +tD’ arepositive definite matrices. Since the direct channel mdtiis tall and full-rank, it
follows thatD’ = 0. Moreover, by the definitions 0% and C (18)-(20), we know the matrifWC is symmetric and positive
definite. It suffices to show the strict concavity fof with respect tot for each symmetrid.

To prove the strict concavity of;, we will calculate the second order derivative faf with respect tot and prove that it
is negative. If we denot® = (C + X + tD’)—l, then the first order derivative is given by

on, OTr (WC(C+X+tD/)*1)
ot ot
In addition, we know that

=Tr ((VBTr(WCB))T %?) .

0B /
— =-_-BDB
ot ’

VeTr(WCB) = CTWT,

which further implies

ohy /
S = (WCBD B) : (29)
In a similar way, we can calculate the second order derivﬁg;@
2
% — 2Ty (D BWCBD B) — 2Ty ((D BD )(BWCB)) . (30)

As C andB are positive definite we can conclude tBBWCB is also positive definite anB)’ BD' is positive semi-definite.
SinceD BD # 0, it must have at least one non-zero eigenvalue 0 with a corresponding eigenvectet Then,
0%hy
ot2

- ((D BD )(BWCB))

~A\Tr (vI'v(BWCB))

“A\Tr (v (BWCB)v)

— ATr (v (B(WC)? (WC)?B)v )
= —\|(WC)zBv]|? <.

IN

Next we prove that the objective function in (17) is strictly conveXW,. The first summation in (17) is linear W ,’s and
does not change the strict convexity. Moreover, the objective function in (17) is decomposabW pvelence, to accomplish
the proof of lemma 1 we just need to prove the strict convexity-dbg det(W,) in W .. For notational simplicity, we drop
the indexk, and prove the strict convexity of logdet(W) along any feasible direction within the set of positive-definite
matrices. LetG be a feasible direction andbe a positive scalar such th®& + ¢G > 0. Then we define a one-dimensional
parametrization of- log det(W) along the directiorG

ha(t) = —log det(W + tQG).

Using properties of the determinant function and the fact Wats positive-definite, we have

ho(t) = —logdet(WY2(I+tW™/2GW~1/2)W1/2)
= - logdet(W) — log det(I + tW~Y/2GW~1/2)
= —logdet(W Zlog (T4+tA;),

where)\,;’s are the eigenvalues 8V ~'/2GW —1/2 and the last step of the above procedure is due to the fact that eigenvalues
of I+ X are one plus the eigenvalues Xf Obviously for any value of\; the function—log(1 + t);) is convex with respect

to ¢ and for any non-zerg,; is strictly convex int. SinceG is non-zero andV is positive-definite, it follows that there exists

at least one non-zerd; which means that- >, log(1 + t);) is strictly convex. Thushs(t) is strictly convex int. [ |

Lemma 2 Let{(Q;, W;)}£ | be a stationary point 0{17), then the poinfQ; }X_, is a stationary point of(15). Conversely,
if {Q;}X, is a stationary point of(15), then{(Q}, W;)}X_, is a stationary point of(16), whereW; £ g, (Q*)~!,
k=12,.... K.
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Proof: Let us usey;(Q, W) and2(Q) to denote the objective functions of (17) and (16) respectively, i.e.,
K

K
P1(Q W) £ " ap (Wigi(Q)) — Y log det(Wy),
k=1

k=1
K
U2(Q) £ ) logdet(gx(Q)).
k=1

Suppose{Q;, Wi HE | is a stationary point of (17). Since the constraints in (17) are separable in the variables, we have

Tr (Vo ¥1(Q", WH)T(Qw —Qp)) >0, k=1.2,... K, (31)
TI' (vwkwl(Q*aW*)T(Wk_WZ)) 207 k:1727"'7K7 (32)

for any feasible poin{Qy, W, }X_,. By taking the gradient of/; (-,-) with respect toW, and further simplifying (32), we
get

Tr [(9:(Q") — (W)™ )(Wi, = Wi)] > 0.
Since this inequality holds for anyy, it follows that
Wi =g.(Q")"', Vk=12,... K. (33)

Fix any index¢ and let us use,, ,, to denote thdm, n)-th entry inQ,. Differentiating using chain rule, we obtain

O N . 995(Q)
O (@ W) Za;{l‘r <W’“ O )| @ wo
9 k:1 b
K
-1 99,(Q
=S am (@) Y|
k=1 ”
_ O
O, |27
wherethe second equality follows from (33). This further implies that

which guarantees the stationarity of the po{®;}X_, for (16). Furthermore, since the objective function in (16) and the
objective function in (15) only differ in sign, the stationarity f®;}X , in (16) is equivalent to the stationarity §3; }%_,

for (15). To prove the converse, we can defW& = ¢,(Q*)~%, k =1,2,..., K, and simply reverse the above argument to
show that (31) and (32) hold. This further implies the stationarity of the pidi@;, W;)}5_, for (17). [ ]
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